If it's not what You are looking for type in the equation solver your own equation and let us solve it.
155.55^2+306.52^2=x^2
We move all terms to the left:
155.55^2+306.52^2-(x^2)=0
We add all the numbers together, and all the variables
-1x^2+118150.3129=0
a = -1; b = 0; c = +118150.3129;
Δ = b2-4ac
Δ = 02-4·(-1)·118150.3129
Δ = 472601.2516
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-\sqrt{472601.2516}}{2*-1}=\frac{0-\sqrt{472601.2516}}{-2} =-\frac{\sqrt{}}{-2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+\sqrt{472601.2516}}{2*-1}=\frac{0+\sqrt{472601.2516}}{-2} =\frac{\sqrt{}}{-2} $
| 3/5x+17/5=x/5+21/3 | | 1/p+1/2p=1/8.5 | | 28x+2×^2=102 | | X^2-20x+20=20 | | 3y+3(35)-15=180 | | 63^2+216^2=x^2 | | 4n=-80 | | (4x9)÷6+10=x | | 2v+2=-2 | | 1/3×+3/2-5/6x=3 | | y^2+4y-27=0 | | P-q=5 | | X.48/64=x/124 | | 4.6l=l | | 2x+14+x+2x-4=58 | | 5x-5=x=15 | | T3=2n-9 | | 4/w-6=-3 | | 17+12x=5+15x | | x=(x-150)/150 | | 9x+15=4x+22 | | T2=2n-9 | | 2x-4+8=2x+4 | | 2(5n+1)=22 | | 9m+4=15 | | X+(1/6)x=35 | | T1=2n-9 | | 4x/3-2*(x+1)=x/2 | | 5x+7/2-x+4/5=1-(3-x/4 | | 7/14=2/14x | | -7x+14=7(-4) | | 7-2n=8n-(.4n) |